C

AA LT YA
e Sho

Case Study

* Friendly Bank

* You are taking the role of a programmer who will be using the
language to create a solution for a customer.

* We will be creating a bank application using C# and will be exploring
the features of C#

Bank System Scope

* we are simply concerned with managing the account information in
the bank.

* This information includes
* their name, address, account number, balance and overdraft value

* There are also a number of different types of accounts

* The system must also generate warning letters and statements as
required

Enumerated Types

enum

{

New,
Active,
UnderAudit,
Frozen,
Closed

struct {
public State;
public string Name ;
public string Address ;
public int AccountNumber ;
public int Balance ;
public int Overdraft ;

RobsAccount;

* Code Sample 23 Generous Account Structure

const int MAX CUST = 100;
[] Bank = new [MAX_CUST];

Bank[0] = RobsAccount;
Bank [25].Name;

Putting account information into arrays

class AccountStructureArray {

public static void Main() {
const int MAX_CUST = 100;
Account[] Bank = new Account[MAX_ CUST];
Bank[©].Name = "Rob";
Bank[@].State = AccountState.Active;
Bank[@].Balance = 1000000;
Bank[1].Name = "Jim";
Bank[1].State = AccountState.Frozen;
Bank[1].Balance = 0;

Non-compiling Account class

class {
public string Name ;
}
class {

public static void Main () {
RobsAccount ;
RobsAccount.Name = "Rob";
Console.WritelLine (RobsAccount.Name);

Compiling Account Class

class {
public string Name ;
b
class {

public static void Main () {
RobsAccount ;
RobsAccount = new Account();
RobsAccount.Name = "Rob";
Console.WriteLine (RobsAccount.Name);

Account

RobsAccount Name: Jim

”

Multiple References

RobsAccount ;

Temp

e« RobsAccount = new ();

* RobsAccount.Name = "Rob";

* Console.WritelLine (RobsAccount.Name);
Temp ;

* Temp = RobsAccount;

* Temp.Name = "Jim";

* Console.WriteLine (RobsAccount.Name);

No References to an Instance

Account

RobsAccount ;

bsA t
RobsAccoun Name: Rob

RobsAccount = new ();

RobsAccount.Name = "Rob"; —
Console.WritelLine (RobsAccount.Name); Name: Jim

RobsAccount = new Account();
RobsAccount.Name = "Jim";
Console.WritelLine (RobsAccount.Name);

there are a number of things that we need to be able to do with the
bank account :
e pay money into the account
* draw money out of the account
find the balance
print out a statement
change the address of the account holder
print out the address of the account holder
change the state of the account
find the state of the account
change the overdraft limit
* find the overdraft limit

Data in Objects

class {
public decimal Balance;
}
RobsAccount ;
RobsAccount = new ();

RobsAccount.Balance = 99;
RobsAccount.Balance = 0;

Member Protection inside objects

class {
private decimal balance;
}

Code Sample 31 Withdraw insufficient funds

* Code Sample 32 Testing the Account Class

Test Driven Development

* You don't do the testing at the end of the project

* You can write code early in the project which will probably be useful
later on

* When you fix bugs in your program you need to be able to convince
yourself that the fixes have not broken some other part

QS S 1y 10,8 ald>

Using a static data member of a class

public class {
public decimal Balance ;
public static decimal InterestRateCharged ;

Account RobsAccount = new Account();
RobsAccount.Balance = 100;
Account.InterestRateCharged = 10;

Using a static method in a class

* we might have a method which decides whether or not someone is
allowed to have a bank account.

* Make it static:
* the method is part of the class, not an instance of the class.

public static bool AccountAllowed (decimal income, int age)

{
if ((income >= 10000) && (age >= 18))
{ return true; }

else
{ return false; }
}
if (.AccountAllowed (25000, 21))
{

Console.WriteLine ("Allowed Account");

Constructor

* The Default Constructor

* Our Own Constructor

* Feeding the Constructor Information
* Overloading Constructors

* Constructor Management

public Account (string inName, string inAddress,
decimal inBalance)
{
name = inName;
address = inAddress;
balance = inBalance;

}

public Account (string inName, string inAddress)

{

name = inName;
address = inAddress;
balance = 0;

}

public Account (string inName)

{

name = inName;
address = "Not Supplied";
balance = 0;

}

public Account (string inName, string inAddress,
decimal inBalance)

{
name = inName;
address = inAddress;
balance = inBalance;
}

public Account (string inName, string inAddress)
this (inName, inAddress, ©)

{
}

public Account (string inName) :
this (inName, "Not Supplied”, ©)

{
}

* Code Sample 35 Overloaded Constructors

A constructor cannot fail

public Account (string inName, string inAddress) {
if (SetName (inName) == false)

{
throw new Exception ("Bad name " + inName) ;
}
if (SetAddress (inAddress) == false)
{
throw new Exception ("Bad address" + inAddress) ;
}
}

* Code Sample 36 Constructor Failing

Components and Hardware

* in a typical home computer, some parts are not "hard wired" to the
system

* the graphics adapter is usually a separate device which is plugged into the
main board.

e can buy a new graphics adapter at any time and fit it into the machine to
improve the performance

* For this to work properly the people who make main boards and the people
who make graphics adapters have had to agree on an interface between two
devices

» standard interfaces which describe exactly how they fit together

Why we Need Software Components?

* A system designed without components is exactly like a computer
with a graphics adapter which is part of the main board

* not possible for me to improve the graphics adapter because it is "hard
wired" into the system.

* For example, we might be asked to create a "BabyAccount" class
which only lets the account holder draw out up to ten pounds each
time. This might happen even after we have installed the system and
it is being used.

Components and Interfaces

* An interface specifies how a software component could be used by
another software component.

public interface {
void PayInFunds (decimal amount);
bool WithdrawFunds (decimal amount);
decimal GetBalance ();

public class : {
private decimal balance = 0;
public bool WithdrawFunds (decimal amount) {
if (balance < amount)
{ return false ; }
balance = balance - amount ;
return true;
}
public void PayInFunds (decimal amount) {
balance = balance + amount ;
}

public decimal GetBalance () {
return balance;
}

}

References to Interfaces

e CustomerAccount class
* as a CustomerAccount (because that is what it is)
 as an IAccount (because that is what it can do)

* Marzieh Malekimajd the individual (because that is who | am)

* A university lecturer (because that is what | can do)

* Code Sample 38 Using Components

Inheritance

* Interface: "l can do these things because | have told you | can”
Inheritance: "l can do these things because my parent can”

public class BabyAccount : CustomerAccount,IAccount

{
}

Overriding methods

* The keyword override means "use this version of the method in preference
to the one in the parent”.

* The keyword virtual means “I might want to make another version of this
method in a child class”. You don’t have to override the method, but if you
don’t have the word present, you definitely can’t.

* This makes override and virtual a kind of matched pair. You use virtual to
mark a method as able to be overridden and override to actually provide a
replacement for the method.

* Code Sample 39 Using Inheritance

